Code: 20ME3501

III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2023

HEAT TRANSFER (MECHANICAL ENGINEERING)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks		
UNIT-I							
1		Derive the general heat conduction equation	L2	CO1	14 M		
		in Cartesian coordinate system.					
OR							
2	a)	i) How do the thermal conductivity of gases	L2	CO1	6 M		
		and liquids vary with temperature?					
		ii) Define thermal conductivity and explain					
		its significance in heat transfer.					
	b)	The inner and outer surfaces of a 0.5-cm-	L2	CO1	8 M		
	0)	thick 2-m x 2-m window glass in winter are	112	COI	0 101		
		10° C and 3° C, respectively. If the thermal					
		conductivity of the glass is $0.78 \text{ W/m} \cdot ^{\circ}\text{C}$,					
		determine the amount of heat loss, in kJ,					
		through the glass over a period of 5 hours.					
UNIT-II							
3	a)	Derive the temperature distribution and heat	L3	CO2	7 M		
		transfer rate through a long fin with insulated					
		tip.					
		Page 1 of 4					

Max. Marks: 70

	b)	What are extended surfaces and explain their practical applications?	L2	CO2	7 M
		OR			
4	a)	 i) What is the difference between the fin effectiveness and the fin efficiency? ii) Explain how the fins enhance heat transfer from a surface. Also, explain how the addition of fins may actually decrease heat transfer from a surface. 	L2	CO2	6 M
	b)	A infinite aluminum cylinder of diameter $D=20 \text{ cm}$ is initially at a uniform temperature $T_i = 200^{\circ}\text{C}$. The cylinder is now placed in water at 15°C where heat transfer takes place by convection, with a heat transfer coefficient of $h = 120 \text{ W/m}^2 \cdot ^{\circ}\text{C}$. Determine the temperature at the center of the cylinder and 5 cm from the end surface 5 min after the start of the cooling.	L3	CO2	8 M
		UNIT-III			
5	a)	Draw the boundary layer over the flat plate and explain the salient features.	L2	CO2	7 M
	b)	A 40-cm-diameter, 110-cm-high cylindrical hot water tank is located in the bathroom of a house maintained at 20°C. The surface temperature of the tank is measured to be 44°C and its emissivity is 0.4. Taking the surrounding surface temperature to be also 20°C, determine the rate of heat loss from all surfaces of the tank by natural convection.	L3	CO2	7 M

6	a)	Differentiate between mechanisms of heat	L2	CO2	6 M		
		transfer by free and forced convection.					
		Mention some of the areas where these					
		mechanisms are predominant.					
	b)	A flat plate 1m wide and 1.5 m long is to be	L3	CO2	8 M		
		maintained at 90°C in air when free stream					
		temperature is 10° C. Determine the velocity					
		at which air must flow over the plate so that					
		the rate of energy dissipation from the plate is					
		3.75kW.					
UNIT-IV							
7	a)	What is the difference between evaporation	L2	CO3	7 M		
		and boiling? What is the difference between					
		pool boiling and flow boiling?					
	b)	Explain filmwise and dropwise	L2	CO3	7 M		
		condensations.					
		OR					
8	a)	i) Define effectiveness.	L2	CO3	7 M		
		ii) What advantage does the effectiveness-					
		NTU method have over the LMTD					
		method?					
		iii) Why is a counter-flow exchanger more					
		effective than a parallel-flow exchanger?					
	b)	A shell-and-tube heat exchanger operates	L3	CO3	7 M		
		with two shell passes and four tube passes.					
		The shell fluid is ethylene glycol ($C_p = 2360$					
		J/kg K) which enters at 140°C and leaves at					
		80°C with a flow rate of 4500 kg/h. Water					
		flows in the tubes, entering at 35° C and					
		leaving at 85°C. The overall heat-transfer					
		coefficient for this arrangement is 850					
		$W/m^2 \cdot {}^0C$. Calculate the flow rate of water					
1		required and the area of the heat exchanger.		1			

UNIT-V					
9	a)	 i) Define the properties emissivity and absorptivity, explain when these two properties are equal to each other?. ii) Define the properties reflectivity and transmissivity. 	L2	CO4	6 M
	b)	Derive an expression for the shape factor in case of a radiation exchange between two surfaces.	L3	CO4	8 M
		OR			
10	a)	What is meant by the radiation shape factor? What are radiation shields and give their applications.	L2	CO4	6 M
	b)	A thin aluminum sheet with an emissivity of 0.15 on both sides is placed between two very large parallel plates which are maintained at uniform temperatures $T_1=900$ K and $T_2=650$ K and have emissivities $\epsilon_1=0.5$ and $\epsilon_2=0.8$ respectively. Determine the net rate of radiation heat transfer between the two plates per unit surface area of the plates and compare the result with and without the shield.	L3	CO4	8 M